Inverse eigenvalues theorem: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 2:
{{Orphan|date=December 2009}}
 
In [[numerical analysis]] and [[linear algebra]], the '''Inverse eigenvalues theorem''' states that, given a matrix A that is [[nonsingular]], with [[eigenvalue]] <math>\|\lambda|>0</math>, <math>\lambda</math> is an eigenvalue of <math>A</math> if and only if <math>\lambda^{-1}</math> is an eigenvalue of <math>A^{-1}</math>.
 
==Proof of the Inverse Eigenvalues Theorem==