Generalized p-value: Difference between revisions

Content deleted Content added
m Date maintenance tags and general fixes: build a598: using AWB
No edit summary
Line 20:
:<math>R = \frac {\overline{x} S} {s \sigma} - \frac{\overline{X}- \mu} {\sigma}
= \frac {\overline{x}} {s} \frac {\sqrt{U}} {\sqrt{n}} ~-~ \frac {Z} {\sqrt{n}} ,</math>
where <math>\overline{x}</math> is the observed value of <math>\overline{X}</math> and <math>Ss</math> is the observed value of <math>sS</math>. Note that the distribution of <math>R</math> and its observed value are both free of nuisance parameters. Therefore, one-sided hypotheses such as <math> H_0 : \rho < \rho_0 </math> can be tested based on the generalized p-value <math> p = Pr( R \ge \rho_0 )</math>, a quantity that can be evaluated via Monte Carlo simulation or using the non-central t-distribution.
 
==Notes==