Logarithmic integral function: Difference between revisions

Content deleted Content added
mNo edit summary
 
+li (e^u)
Line 3:
: &int;<sub>''0''</sub><sup>''x''</sup> 1/ln ''t'' d''t''
 
is a non-elemental [[function]] called '''logarithmic integral''' or '''integral logarithm''' and denoted with '''li(''x'')''' or '''Li(''x'')'''. For ''x'' > 1 in a point ''t''=1 this integral diverges, in this case we use for Li(''x'') the main value of unessential integral. Logarithmic integral with the main value of nondefinite integral comes in a variety of formulas concerning the density of [[prime number|primes]] in [[number theory]] and specially in [[prime number theorem|Primeprime numbers theorem]], where for example the estimation for ''prime counting function'' &pi;(''n'') is:
 
: &pi;(''n'') ~ Li(n) = &int;<sub>''2''</sub><sup>''n''</sup> 1/ ln ''t'' d''t''.
 
This integral is in a connection with ''integral exponential function'' such as that li(''x'') = Ei (ln ''x''). If we substitute ''x'' with e<sup>''u''</sup>, we get a serie:
 
:li(e<sup>''u''</sup>) = &gamma; + ln ''u'' + ''u'' + ''u''<sup>2</sup>/2 &middot; 2! + ''u''<sup>3</sup>/3 &middot; 3! + ''u''<sup>4</sup>/4 &middot; 4! - ...,
 
where &gamma; &#8776; 0.57721 56649 01532 is [[Leonhard Euler|Euler-Mascheroni's constant]].