Content deleted Content added
→Polar cone: add reference |
m ISBNs (Build KE) |
||
Line 1:
[[
[[
'''Dual cone''' and '''polar cone''' are closely related concepts in [[convex analysis]], a branch of [[mathematics]].
Line 11:
<math>C^* </math> is always a [[convex cone]], even if <math>C </math> is neither [[convex set|convex]] nor a [[linear cone|cone]].
When <math>C </math> is a cone, the following properties hold:<ref name="Boyd">{{cite book|title=Convex Optimization|first1=Stephen P.|last1=Boyd|first2=Lieven|last2=Vandenberghe|year=2004|publisher=Cambridge University Press|isbn=
* A non-zero vector <math>y</math> is in <math>C^*</math> if and only if both of the following conditions hold: (i) <math> y </math> is a [[surface normal|normal]] at the origin of a [[hyperplane]] that [[supporting hyperplane|supports]] <math>C </math>. (ii) <math> y </math> and <math>C </math> lie on the same side of that supporting hyperplane.
*<math>C^* </math> is [[closed set|closed]] and convex.
Line 22:
==Polar cone==
[[
For a set <math>C</math> in <math>X</math>, the '''polar cone''' of <math>C</math> is the set
:<math>C^o = \left \{y\in X^*: \langle y , x \rangle \leq 0 \quad \forall x\in C \right \}.</math><ref name="Rockafellar">{{cite book|author=[[Rockafellar, R. Tyrrell]]|title=Convex Analysis|publisher=Princeton University Press|___location=Princeton, NJ|year=1997|origyear=1970|isbn=
It can be seen that the polar cone cone is equal to the negative of the dual cone, i.e. <math>C^o=-C^*</math>.
Line 46:
| date = 2002
| pages =
| isbn =
}}
Line 58:
| date = 1997
| pages =
| isbn =
}}
Line 69:
| date = 2000
| pages =
| isbn =
}}
|