Content deleted Content added
Shantham11 (talk | contribs) |
Shantham11 (talk | contribs) |
||
Line 30:
===Aliasing===
{{main|Aliasing}}
[[Image:Unaliased_sampled_spectrum_in_2D.png|thumb|Fig. 3: Support of the sampled spectrum <math>\hat f_s(.)</math> obtained by hexagonal sampling of a two-dimensional function
[[Image:Aliased_sampled_spectrum_in_2D.png|thumb|Fig. 4: Support of the sampled spectrum <math>\hat f_s(.)</math> obtained by hexagonal sampling of a two-dimensional function
[[File:Moire pattern of bricks small.jpg|thumb|205px|Fig. 5: Spatial aliasing in the form of a [[Moiré pattern]].]]
Line 40:
{{NumBlk|:|<math>\hat f_s(\xi)\ \stackrel{\mathrm{def}}{=} \sum_{y \in \Gamma} \hat f\left(\xi - y\right) = \sum_{x \in \Lambda} |\Lambda|f(x) \ e^{-i 2\pi \langle x, \xi \rangle},</math>|{{EquationRef|Eq.1}}}}
where <math>|\Lambda| </math> represents the volume of the [[parallelepiped]] formed by the vectors {''v''<sub>1</sub>, ..., ''v''<sub>''n''</sub>}. This periodic function is often referred to as the sampled spectrum and can be interpreted as the analogue of the [[discrete-time Fourier transform]] (DTFT) in higher dimensions. If the original
A simple illustration of aliasing can be obtained by studying low-resolution images. A gray-scale image can be interpreted as a function in two-dimensional space. An example of aliasing is shown in the images of brick patterns in Figure 5. The image shows the effects of aliasing when the sampling theorem's condition is not satisfied. If the lattice of pixels is not fine enough for the scene, aliasing occurs as evidenced by the appearance of the [[Moiré pattern]] in the image obtained. The image in Figure 6 is obtained when a smoothened version of the scene is sampled with the same lattice. In this case the conditions of the theorem are satisfied and no aliasing occurs.
Line 46:
===Optimal sampling lattices===
One of the objects of interest in designing a sampling scheme for
==Applications==
|