Content deleted Content added
Shantham11 (talk | contribs) |
Shantham11 (talk | contribs) |
||
Line 45:
===Optimal sampling lattices===
One of the objects of interest in designing a sampling scheme for wavenumber-limited fields is to identify the configuration of points that leads to the minimum sampling density, i.e., the density of sampling points per unit spatial volume in <math>\Re^n</math>. Typically the cost for taking and storing the measurements is proportional to the sampling density employed. Often in practice, the natural approach to sample two-dimensional fields is to sample it at points on a [[Lattice_(group)|rectangular lattice]]. However, this is not always the ideal choice in terms of the sampling density. The theorem of Petersen and Middleton can be used to identify the optimal lattice for sampling fields that are wavenumber-limited to a given set <math>\Omega \subset \Re^d</math>. For example, it can be shown that the lattice in <math>\Re^2</math> with minimum spatial density of points that admits perfect reconstructions of fields wavenumber-limited to a circular disc in <math>\Re^2</math> is the
▲One of the objects of interest in designing a sampling scheme for wavenumber-limited fields is to identify the configuration of points that leads to the minimum sampling density, i.e., the density of sampling points per unit spatial volume in <math>\Re^n</math>. The theorem of Petersen and Middleton can be used to identify the optimal lattice for sampling fields that are wavenumber-limited to a given set <math>\Omega \subset \Re^d</math>. For example, it can be shown that the lattice in <math>\Re^2</math> with minimum spatial density of points that admits perfect reconstructions of fields wavenumber-limited to a circular disc in <math>\Re^2</math> is the [[hexagonal lattice]]. As a consequence, hexagonal lattices are preferred for sampling [[Isotropy|isotropic fields]] in <math>\Re^2</math>.
==Applications==
|