Content deleted Content added
Shantham11 (talk | contribs) →Preliminaries: Typo fixed |
Shantham11 (talk | contribs) No edit summary |
||
Line 37:
The theorem gives conditions on sampling lattices for perfect reconstruction of the sampled. If the lattices are not fine enough to satisfy the Petersen-Middleton condition, then the field cannot be reconstructed exactly from the samples in general. In this case we say that the samples may be [[Aliasing|aliased]].
The generalization of the [[Poisson summation formula]] to higher dimensions
{{NumBlk|:|<math>\hat f_s(\xi)\ \stackrel{\mathrm{def}}{=} \sum_{y \in \Gamma} \hat f\left(\xi - y\right) = \sum_{x \in \Lambda} |\Lambda|f(x) \ e^{-i 2\pi \langle x, \xi \rangle},</math>|{{EquationRef|Eq.1}}}}
|