Utente:Andrea And/Sandbox/3: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica |
Nessun oggetto della modifica |
||
Riga 1:
{| class="wikitable"
|-
! Descrizione || Figura || Momento di inerzia || Commento
Riga 7:
|align="center"|
| <math> I = m r^2</math>
| Un massa puntiforme non ha momento di inerzia intorno al proprio asse, ma
|-
| Due masse puntiformi, ''M'' e ''m'', con [[massa ridotta]] ''<math> \mu </math>'' e
|align="center"|
| <math> I = \frac{ M m }{ M \! + \! m } x^2 = \mu x^2 </math>
|—
|-
|
| align="center"|[[Image:moment of inertia
| <math>I_{\mathrm{end}} = \frac{m L^2}{3} \,\!</math> <ref name="serway"/>
|
|-
|
| align="center"|[[Image:moment of inertia
| <math>I_{\mathrm{center}} = \frac{m L^2}{12} \,\!</math> <ref name="serway"/>
|
|-
|
| align="center"|[[Image:moment of inertia hoop.svg|170px]]
| <math>I_z = m r^2\!</math><br><math>I_x = I_y = \frac{m r^2}{2}\,\!</math>
|
|-
| Thin, solid [[disk (mathematics)|disk]]
|align="center"| [[Image:moment of inertia disc.svg|170px]]
| <math>I_z = \frac{m r^2}{2}\,\!</math><br><math>I_x = I_y = \frac{m r^2}{4}\,\!</math>
| This is a special case of the solid cylinder,
|-
| Thin [[cylinder (geometry)|cylindrical]] shell
|align="center"| [[Image:moment of inertia thin cylinder.png]]
| <math>I = m r^2 \,\!</math> <ref name="serway">{{
|
|
|
|
|isbn=0-03-004534-7
|
}}</ref>
| This expression assumes the shell thickness is negligible. It is a special case of the thick-walled cylindrical tube for ''r''<sub>1</sub>=''r<sub>2</sub>.
Also, a point mass (''m'') at the end of a
|-
|Solid cylinder
|align="center"| [[Image:moment of inertia solid cylinder.svg|170px]]
|<math>I_z = \frac{m r^2}{2}\,\!</math> <ref name="serway"/><br/><math>I_x = I_y = \frac{1}{12} m\left(3r^2+h^2\right)</math>
| This is a special case of the thick-walled cylindrical tube,
|-
| Thick-walled cylindrical tube
|align="center"| [[Image:moment of inertia thick cylinder h.png]]
| <!-- Please read the discussion on the talk
|
|-
| [[Sphere]] (hollow)
|align="center"| [[Image:moment of inertia hollow sphere.svg|170px]]
|<math>I = \frac{2 m r^2}{3}\,\!</math> <ref name="serway"/>
| A hollow sphere can be taken to be made up of two stacks of infinitesimally thin, circular hoops, where the radius differs from ''0'' to ''r'' (or a single stack, , where the radius differs from ''-r'' to ''r'').
|-
| [[ball (mathematics)|Ball]] (solid)
|align="center"| [[Image:moment of inertia solid sphere.svg|170px]]
|<math>I = \frac{2 m r^2}{5}\,\!</math> <ref name="serway"/>
Riga 68:
Also, it can be taken to be made up of infinitesimally thin, hollow spheres, where the radius differs from 0 to ''r''.
|-
| [[right angle|Right]] circular [[cone (geometry)|cone]]
|align="center"| [[Image:moment of inertia cone.svg|120px]]
|<math>I_z = \frac{3}{10}mr^2 \,\!</math> <ref name="beer">{{
|
|
|
|
|isbn=0-07-004389-2
|
}}</ref><br/><math>I_x = I_y = \frac{3}{5}m\left(\frac{r^2}{4}+h^2\right) \,\!</math> <ref name="beer"/>
|—
|-
| [[
|align="center"| [[Image:
| About a diameter: <math>\frac{1}{8}\left(4a^2 + 5b^2\right)m</math> <ref name="
| url = http://scienceworld.wolfram.com/physics/MomentofInertiaRing.html
|
|
|
|
}}</ref><br/>
About the vertical axis: <math>\left(a^2 + \frac{3}{4}b^2\right)m</math> <ref name="
|—
|-
| [[Ellipsoid]] (solid) of semiaxes ''a'', ''b'',
| [[Image:Ellipsoid_321.png|170px]]
|<math>I_a = \frac{m (b^2+c^2)}{5}\,\!</math>
|—
|-
| Thin rectangular plate
|align="center"| [[Image:Recplaneoff.svg]]
|<math>I_e = \frac {m h^2}{3}+\frac {m w^2}{12}\,\!</math>
|—
|-
| Thin rectangular plate
|align="center"| [[Image:Recplane.svg]]
|<math>I_c = \frac {m(h^2 + w^2)}{12}\,\!</math> <ref name="serway"/>
|—
|-
| Solid [[cuboid]]
|align="center"| [[Image:moment of inertia solid rectangular prism.png]]
|<math>I_h = \frac{1}{12} m\left(w^2+d^2\right)</math><br><math>I_w = \frac{1}{12} m\left(h^2+d^2\right)</math><br><math>I_d = \frac{1}{12} m\left(h^2+w^2\right)</math>
| For a similarly oriented [[cube (geometry)|cube]]
|-
| Solid [[cuboid]]
|align="center"| [[Image: Moment of Inertia Cuboid.jpg|140px]]
|<math>I = \frac{m\left(W^2D^2+L^2D^2+L^2W^2\right)}{6\left(L^2+W^2+D^2\right)}</math>
| For a cube
|-
| Plane [[polygon]]
mass <math>m</math> uniformly distributed on its interior, rotating about an axis perpendicular to the plane
|align="center"| [[Image:Polygon moment of inertia.png|130px]]
|<math>I=\frac{m}{6}\frac{\sum\limits_{n=1}^{N-1}\|\vec{P}_{n+1}\times\vec{P}_{n}\|((\vec{P}_{n+1}\cdot\vec{P}_{n+1})+(\vec{P}_{n+1}\cdot\vec{P}_{n})+(\vec{P}_{n}\cdot\vec{P}_{n}))}{\sum\limits_{n=1}^{N-1}\|\vec{P}_{n+1}\times\vec{P}_{n}\|}</math>
|
|-
| Infinite [[disk (mathematics)|disk]]
(i.e. <math> \rho(x,y) = \tfrac{m}{2\pi ab}\, e^{-((x/a)^2+(y/b)^2)/2} </math>
Where : <math> \rho(x,y) </math> is the mass-density as a function of x
|align="center"| [[File:Gaussian 2D.png|130px]]
| <math>I = m (a^2+b^2) \,\!</math>
Riga 131:
|}
<!-- There is no such thing as an illegal set of axes. They may be invalid for some purposes but the x, y
the x-y-z axis for the solid cylinder does not follow the right-
==See also==
Riga 140:
*[[List of moment of inertia tensors]]
==
<references/>
<!--
[[Category:Mechanics|Moment of inertia]]
[[Category:Physics lists|Moments of inertia]]
[[Category:
[[ar:ملحق:قائمة عزم القصور الذاتي]]
|