Utente:Andrea And/Sandbox/3: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Andrea And (discussione | contributi)
Nessun oggetto della modifica
Andrea And (discussione | contributi)
Nessun oggetto della modifica
Riga 27:
| align="center"|[[Image:moment of inertia hoop.svg|170px]]
| <math>I_z = m r^2\!</math><br><math>I_x = I_y = \frac{m r^2}{2}\,\!</math>
| Questo è anche un caso particolare del [[Toro (geometria)|toro]] per ''b'' = 0. (vedi più in basso.), as well as of a thick-walled cylindrical tube con open ends, con ''r''<sub>1</sub>=''r''<sub>2</sub> e ''h'' = 0.
|-
| Thin, solid [[disk (mathematics)|diskDisco]] solido e sottile, di raggio ''r'' e massa ''m''
|align="center"| [[Image:moment of inertia disc.svg|170px]]
| <math>I_z = \frac{m r^2}{2}\,\!</math><br><math>I_x = I_y = \frac{m r^2}{4}\,\!</math>
| ThisQuesto isè aun specialcaso caseparticolare ofdel thecilindro solid cylindersolido, con ''h'' = 0.
|-
| ThinSuperficie [[cylindercilindrica (geometry)|cylindrical]] shellsottile con openestremità endsaperte, di raggio ''r'' e massa ''m''
|align="center"| [[Image:moment of inertia thin cylinder.png]]
| <math>I = m r^2 \,\!</math>&nbsp;&nbsp;<ref name="serway">{{cita libro
Riga 44:
|anno=1986
}}</ref>
| Questa espressione vale per un cilindro vuoto (come per esempio un tubo), con spessore delle pareti trascurabile (appunto approssimabile a una superficie cilindrica). E' un caso particolare del tubo cilindrico con pareti spesse e ''r''<sub>1</sub>=''r<sub>2</sub>.
| This expression assumes the shell thickness is negligible. It is a special case of the thick-walled cylindrical tube for ''r''<sub>1</sub>=''r<sub>2</sub>.
Also, a point mass (''m'') at the end of a Asta of length ''r'' has this same moment of inertia e the value ''r'' is called the [[radius of gyration]].
|-
Riga 52:
| This is a special case of the thick-walled cylindrical tube, con ''r''<sub>1</sub>=0. (Note: X-Y axis should be swapped for a steard right heed frame)
|-
| Thick-walledTubo cylindrical tubecilindrico con openpareti endsspesse, ofdi innerraggio radiusinterno ''r''<sub>1</sub>, outerraggio radiusesterno ''r''<sub>2</sub>, lengthlunghezza ''h'' e massa ''m''
|align="center"| [[Image:moment of inertia thick cylinder h.png]]
| <!-- Please read the discussion on the talk pagina e the citad source before changing the sign to a minus. --><math>I_z = \frac{1}{2} m\left({r_1}^2 + {r_2}^2\right)</math>&nbsp;&nbsp;<ref name="serway"/><ref>[http://www.livephysics.com/problems-e-answers/classical-mechanics/find-moment-of-inertia-of-a-uniform-hollow-cylinder.html Classical Mechanics - Moment of inertia of a uniform hollow cylinder]. LivePhysics.com. Retrieved on 2008-01-31.</ref><br><math>I_x = I_y = \frac{1}{12} m\left[3\left({r_2}^2 + {r_1}^2\right)+h^2\right]</math><br>oro whendefinendo defininglo thespessore normalized thicknessnormalizzato ''t<sub>n</sub>''&nbsp;=&nbsp;''t''/''r'' e letting ####### ''r''&nbsp;=&nbsp;''r''<sub>2</sub>, <br>thenallora <math>I_z = mr^2\left(1-t_n+\frac{1}{2}{t_n}^2\right) </math>
| con a density ofdensità ''ρ'' e thela samestessa geometrygeometria <math>I_z = \frac{1}{2} \pi\rho h\left({r_2}^4 - {r_1}^4\right)</math> <math>I_x = I_y = \frac{1}{12} \pi\rho h\left(3({r_2}^4 - {r_1}^4)+h^2({r_2}^2 - {r_1}^2)\right)</math>
|-
| [[Sfera]] (cava) di raggio ''r'' e massa ''m''
Riga 80:
|—
|-
| [[Toro (geometria)|Toro]] ofcon tuberaggio radius###del tubo## ''a'', cross-sectional radiusraggio ###trasversale###''b'' e massa ''m''.
|align="center"| [[Image:torus cycles.png|122px]]
| About a diameter: <math>\frac{1}{8}\left(4a^2 + 5b^2\right)m</math>&nbsp;&nbsp;<ref name="weisstein_toro">{{cita web
Riga 107:
|—
|-
| Solid [[cuboidParallelepipedo]] solido di altezza ''h'', larghezza ''w'', e depthprofondità ''d'', e massa ''m''
|align="center"| [[Image:moment of inertia solid rectangular prism.png]]
|<math>I_h = \frac{1}{12} m\left(w^2+d^2\right)</math><br><math>I_w = \frac{1}{12} m\left(h^2+d^2\right)</math><br><math>I_d = \frac{1}{12} m\left(h^2+w^2\right)</math>
| For a similarly oriented [[cube (geometry)|cube]] con sides of length <math>s</math>, <math>I_{CM} = \frac{m s^2}{6}\,\!</math>.
|-
| Solid [[cuboidParallelepipedo]] solido di altezza ''D'', larghezza ''W'', e lengthlunghezza ''L'', e massa ''m'' con the longest diagonal as the axis.
|align="center"| [[Image: Moment of Inertia Cuboid.jpg|140px]]
|<math>I = \frac{m\left(W^2D^2+L^2D^2+L^2W^2\right)}{6\left(L^2+W^2+D^2\right)}</math>