Utente:Andrea And/Sandbox/3: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Andrea And (discussione | contributi)
Nessun oggetto della modifica
Andrea And (discussione | contributi)
Nessun oggetto della modifica
Riga 68:
Also, it can be taken to be made up of infinitesimally thin, hollow spheres, where the radius differs from 0 to ''r''.
|-
| [[right angle|RightCono]] circularcircolare [[coneAngolo (geometry)retto|coneretto]] con radiusraggio ''r'', heightaltezza ''h'' e massa ''m''
|align="center"| [[Image:moment of inertia cone.svg|120px]]
|<math>I_z = \frac{3}{10}mr^2 \,\!</math>&nbsp;&nbsp;<ref name="beer">{{cita libro
Riga 97:
|—
|-
| ThinPiastra rectangularrettangolare platesottile di altezza ''h'' e di, larghezza ''w'' e massa ''m'' <br>(Axis of rotation at the end of the plate)
|align="center"| [[Image:Recplaneoff.svg]]
|<math>I_e = \frac {m h^2}{3}+\frac {m w^2}{12}\,\!</math>
|—
|-
| ThinPiastra rectangularrettangolare platesottile di altezza ''h'' e di, larghezza ''w'' e massa ''m''
|align="center"| [[Image:Recplane.svg]]
|<math>I_c = \frac {m(h^2 + w^2)}{12}\,\!</math>&nbsp;&nbsp;<ref name="serway"/>
|—
|-
| [[Parallelepipedo]] solido di altezza ''h'', larghezza ''w'', e profondità ''d'', e massa ''m''
|align="center"| [[Image:moment of inertia solid rectangular prism.png]]
|<math>I_h = \frac{1}{12} m\left(w^2+d^2\right)</math><br><math>I_w = \frac{1}{12} m\left(h^2+d^2\right)</math><br><math>I_d = \frac{1}{12} m\left(h^2+w^2\right)</math>
| For a similarly oriented [[cube (geometry)|cube]] con sides of length <math>s</math>, <math>I_{CM} = \frac{m s^2}{6}\,\!</math>.
|-
| [[Parallelepipedo]] solido di altezza ''D'', larghezza ''W'', e lunghezza ''L'', e massa ''m'' con theasse longestlungo diagonalla asdiagonale thepiù axislunga.
|align="center"| [[Image: Moment of Inertia Cuboid.jpg|140px]]
|<math>I = \frac{m\left(W^2D^2+L^2D^2+L^2W^2\right)}{6\left(L^2+W^2+D^2\right)}</math>
| ForPer aun cubecubo condi sideslato <math>s</math>, <math>I = \frac{m s^2}{6}\,\!</math>.
|-
| PlanePoligono [[polygon]]piano con verticesvertici <math>\vec{P}_{1}</math>, <math>\vec{P}_{2}</math>, <math>\vec{P}_{3}</math>, ..., <math>\vec{P}_{N}</math> e
massa <math>m</math> uniformemente distribuita, che ruota intorno a un asse perpendicolare al piano e passante per l'origine.
mass <math>m</math> uniformly distributed on its interior, rotating about an axis perpendicular to the plane e passing through the origin.
|align="center"| [[Image:Polygon moment of inertia.png|130px]]
|<math>I=\frac{m}{6}\frac{\sum\limits_{n=1}^{N-1}\|\vec{P}_{n+1}\times\vec{P}_{n}\|((\vec{P}_{n+1}\cdot\vec{P}_{n+1})+(\vec{P}_{n+1}\cdot\vec{P}_{n})+(\vec{P}_{n}\cdot\vec{P}_{n}))}{\sum\limits_{n=1}^{N-1}\|\vec{P}_{n+1}\times\vec{P}_{n}\|}</math>
|Questa espressione assume che theil polygonpoligono issia [[star-shaped polygon|star-shaped]]. The vectors <math>\vec{P}_{1}</math>, <math>\vec{P}_{2}</math>, <math>\vec{P}_{3}</math>, ..., <math>\vec{P}_{N}</math> are [[position vector|position vectors]] of the vertices.
|-
| Infinite [[disk (mathematics)|disk]] con mass [[normally distributed]] on two axes around the axis of rotation