Content deleted Content added
comments on Halley's formula |
No edit summary |
||
Line 3:
The main application of SRA lies in finding the [[Root (mathematics)|zeros]] of [[secular function|secular functions]]. A divide-and-conquer algorithm to find the [[eigenvalues]] and [[eigenvectors]] for various kinds of [[matrices]] is well-known in [[numerical analysis]]. In a strict sense, SRA implies a specific [[interpolation]] using simple rational functions as a part of the divide-and-conquer algorithm. Since such secular functions consist of a series of rational functions with simple poles, SRA is the best candidate to interpolate the zeros of the secular function. Moreover, based on previous researches, a simple zero that lies between two adjacent poles can be considerably well interpolated by using a two-dominant-pole rational function as an approximating function.
==Helley's formular==
The origin of the interpolation with rational functions can be found in the previous work done by [[Edmond Halley]]. The Helley's formular is known as one-point third-order iterative method to solve <math>\,f(x)=0</math> by means of approximating a rational function defined by
:<math>h(z)=\frac{a}{z+b}+c.</math>
Line 24 ⟶ 25:
SRA strictly implies this one-opint second-order interpolation by a simple rational function.
We can notice that even third order method is a variation of Newton's method. We see the Newton's steps are multiplied by some factors. These factors are called the convergence factors of the variations, which are useful for
== References ==
|