Content deleted Content added
minor fixes |
|||
Line 2:
== Introduction ==
The rapid growth of the [[Internet]] and [[World Wide Web]] has led to vast amounts of information available online. In addition, business and government organizations create large amounts of both structured and unstructured information which needs to be processed, analyzed, and linked. [[Vinton Cerf
[[Parallel processing]] approaches can be generally classified as either ''compute-intensive'', or ''data-intensive''.<ref>[http://portal.acm.org/citation.cfm?id=280278 Models and languages for parallel computation], by D.B. Skillicorn, and D. Talia, ACM Computing Surveys, Vol. 30, No. 2, 1998, pp. 123-169.</ref><ref>[http://www.pnl.gov/science/images/highlights/computing/dic_special.pdfData-Intensive Computing in the 21st Century], by I. Gorton, P. Greenfield, A. Szalay, and R. Williams, IEEE Computer, Vol. 41, No. 4, 2008, pp. 30-32.</ref><ref>[http://www.computer.org/portal/web/csdl/doi/10.1109/MC.2008.122 High-Speed, Wide Area, Data Intensive Computing: A Ten Year Retrospective], by W.E. Johnston, IEEE Computer Society, 1998.</ref> Compute-intensive is used to describe application programs that are compute bound. Such applications devote most of their execution time to computational requirements as opposed to I/O, and typically require small volumes of data. [[Parallel processing]] of compute-intensive applications typically involves parallelizing individual algorithms within an application process, and decomposing the overall application process into separate tasks, which can then be executed in parallel on an appropriate computing platform to achieve overall higher performance than serial processing. In compute-intensive applications, multiple operations are performed simultaneously, with each operation addressing a particular part of the problem. This is often referred to as task [[parallel computing|parallelism]].
|