Content deleted Content added
→Preliminaries: Another mathematical characterization of reciprocal lattice. |
→Reconstruction: changed all f(.) to f(\cdot) |
||
Line 27:
==Reconstruction==
[[Image:Unaliased_sampled_spectrum_in_2D.png|thumb|Fig. 3: Support of the sampled spectrum <math>\hat f_s(
The generalization of the [[Poisson summation formula]] to higher dimensions <ref name="stewei71">E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces", Princeton University Press, Princeton, 1971.</ref> can be used to show that the samples, <math>\{f(x): x \in \Lambda\} </math>, of the function
{{NumBlk|:|<math>\hat f_s(\xi)\ \stackrel{\mathrm{def}}{=} \sum_{y \in \Gamma} \hat f\left(\xi - y\right) = \sum_{x \in \Lambda} |\Lambda|f(x) \ e^{-i 2\pi \langle x, \xi \rangle},</math>|{{EquationRef|Eq.1}}}}
where <math>|\Lambda| </math> represents the volume of the [[parallelepiped]] formed by the vectors {''v''<sub>1</sub>, ..., ''v''<sub>''n''</sub>}. This periodic function is often referred to as the sampled spectrum and can be interpreted as the analogue of the [[discrete-time Fourier transform]] (DTFT) in higher dimensions. If the original wavenumber-limited spectrum <math>\hat f(
{{NumBlk|:|<math>f(x) = \sum_{y \in \Lambda} |\Lambda| f(y) \check \chi_\Omega(y - x)</math>,|{{EquationRef|Eq.2}}}}
where <math>\check \chi_\Omega(
As an example suppose that <math>\Omega</math> is a circular disc. Figure 3 illustrates the support of <math>\hat f_s(
==Implications==
|