Content deleted Content added
No edit summary |
corrections per WP:MOS and WP:MOSMATH |
||
Line 1:
{{Multiple issues|{{expert|date=December 2012|reason=Confirmation, details on the Affine Term Structure Model.}}}}
An '''affine term structure model''' is a
== Background ==
Line 7:
Start with a stochastic short rate model <math>r(t)</math> with dynamics
: <math>
dr(t)=\mu(t,r(t)) \, dt + \sigma(t,r(t)) \, dW(t)
</math>
and a risk-free zero-coupon bond maturing at time <math>T</math> with price <math>p(t,T)</math> at time <math>t</math>. If
: <math>p(t,T)=F^T(t,r(t))</math>
and <math>F</math> has the form
: <math>F^T(t,r)=e^{A(t,T)-B(t,T)r}</math>
where <math>A</math> and <math>B</math> are deterministic functions, then the short rate model is said to have an '''affine term structure'''.
Line 25:
Using Ito's formula we can determine the constraints on <math>\mu</math> and <math>\sigma</math> which will result in an affine term structure. Assuming the bond has an affine term structure and <math>F</math> satisfies the [[term structure equation]], we get
: <math>A_t(t,T)-(1+B_t(t,T))r-\mu(t,r)B(t,T)+\frac{1}{2}\sigma^2(t,r)B^2(t,T)=0</math>
The boundary value
: <math>F^T(T,r)=1</math>
implies
: <math>
\begin{align}
A(T,T)&=0\\
Line 42:
Next, assume that <math>\mu</math> and <math>\sigma^2</math> are affine in <math>r</math>:
: <math>
\begin{align}
\mu(t,r)&=\alpha(t)r+\beta(t)\\
Line 51:
The differential equation then becomes
: <math>
A_t(t,T)-\beta(t)B(t,T)+\frac{1}{2}\delta(t)B^2(t,T)-\left[1+B_t(t,T)+\alpha(t)B(t,T)-\frac{1}{2}\gamma(t)B^2(t,T)\right]r=0
</math>
Line 57:
Because this formula must hold for all <math>r</math>, <math>t</math>, <math>T</math>, the coefficient of <math>r</math> must equal zero.
: <math>
1+B_t(t,T)+\alpha(t)B(t,T)-\frac{1}{2}\gamma(t)B^2(t,T)=0
</math>
Line 63:
Then the other term must vanish as well.
: <math>
A_t(t,T)-\beta(t)B(t,T)+\frac{1}{2}\delta(t)B^2(t,T)=0
</math>
Then, assuming <math>\mu</math> and <math>\sigma^2</math> are affine in <math>r</math>, the model has an affine term structure where <math>A</math> and <math>B</math> satisfy the system of equations:
: <math>\begin{align}
1+B_t(t,T)+\alpha(t)B(t,T)-\frac{1}{2}\gamma(t)B^2(t,T)&=0\\
B(T,T)&=0\\
Line 79 ⟶ 80:
=== Vasicek ===
The [[Vasicek model]] <math>dr=(b-ar)\,dt+\sigma \,dW</math> has an affine term structure where
: <math>
\begin{align}
p(t,T)&=e^{A(t,T)-B(t,T)r(T)}\\
|