Ordinal collapsing function: Difference between revisions

Content deleted Content added
BG19bot (talk | contribs)
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (8855)
Beyond the Feferman-Schütte ordinal: fix several confusions relating to the n-ary Veblen functions
Line 55:
 
==== Beyond the Feferman-Schütte ordinal ====
We have <math>\psi(\Omega^{\Omega+\Omega^\alpha}) = \phi_{\Gamma_0+\alpha}(0)</math> for all <math>\alpha\leq\Gamma_1</math> where <math>\Gamma_1</math> is the next fixed point of <math>\alpha \mapsto \phi_\alpha(0)</math>. So, if <math>\alpha\mapsto\Gamma_\alpha</math> enumerates the fixed points in question. (which can also be noted <math>\phi(\alpha1,0,0\alpha)</math> using the many-valued Veblen functions) we have <math>\psi(\Omega^{\Omega(1+\alpha)}) = \Gamma_\alpha</math>, until the first fixed point <math>\phi(1,1,0)</math> of the <math>\alpha\mapsto\Gamma_\alpha</math> itself, which will be <math>\psi(\Omega^{\Omega^+1})</math> (and the first fixed point <math>\phi(2,0,0)</math> of the <math>\alpha \mapsto \phi(1,\alpha,0)</math> functions will be <math>\psi(\Omega^{\Omega2})</math>). In this manner:
* <math>\psi(\Omega^{\Omega^2})</math> is the [[Ackermann ordinal]] (the range of the notation <math>\phi(\alpha,\beta,\gamma)</math> defined predicatively),
* <math>\psi(\Omega^{\Omega^\omega})</math> is the [[small Veblen ordinal|&ldquo;small&rdquo; Veblen ordinal]] (the range of the notations <math>\phi(\ldots)</math> predicatively using finitely many variables),