Content deleted Content added
→Approximations: explain phi |
m \tfrac |
||
Line 5:
:<math>K(\mathbf{x}, \mathbf{x'}) = \exp(-\frac{||\mathbf{x} - \mathbf{x'}||_2^2}{2\sigma^2})</math>
<math>\textstyle||\mathbf{x} - \mathbf{x'}||_2^2</math> may be recognized as the [[Euclidean_distance#Squared_Euclidean_distance|squared Euclidean distance]] between the two feature vectors. <math>\sigma</math> is a free parameter. An equivalent, but simpler, definition involves a parameter <math>\textstyle\gamma = -\
:<math>K(\mathbf{x}, \mathbf{x'}) = \exp(\gamma||\mathbf{x} - \mathbf{x'}||_2^2)</math>
|