Content deleted Content added
m format |
No edit summary |
||
Line 56:
This is the [[Newton's method|Newton–Raphson method]]. It starts off with a single approximation <math>x_1</math> so we can take ''k'' = 0 in ({{EquationNote|2}}). It does not require an interpolating polynomial but instead one has to evaluate the derivative <math>f'</math> in each iteration. Depending on the nature of <math>f</math> this may not be possible or practical.
Once the interpolating polynomial <math>p_{n,k} (x)</math> has been calculated, one can also calculate the next approximation <math>x_{n+k+1}</math> as a solution of <math>p_{n,k} (x)=0</math> instead of using ({{EquationNote|1}}). For ''k''
== References ==
|