Numero perfetto totiente: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m Sostituisco template obsoleto |
m ortografia |
||
Riga 16:
Più generalmente, se ''p'' è un numero primo maggiore di 3 e 3''p'' è un numero perfetto totiente, allora p è esprimibile nella forma 4''n''+1, ovvero ''p'' ≡ 1 ([[Aritmetica modulare|modulo]] 4)<ref>{{cita conferenza|autore=Mohan A. L., Suryanarayana D.|titolo = Perfect totient numbers|conferenza = Number theory|città=Mysore|anno=1982|pagine = 101–105|editore = Lecture Notes in Mathematics, vol. 938, Springer-Verlag|url=http://www.ams.org/mathscinet-getitem?mr=2051959}}</ref>; in più, ''n'' è anch'esso un numero perfetto totiente. Quindi, con ''n'' perfetto totiente e 4''n''+1 primo, anche 3·(4''n''+1)=12''n''+3 è perfetto totiente. Questo concatena i numeri di questo tipo in qualcosa di simile a una [[catena di Cunningham|catena di Cunningham generalizzata]]<ref>{{en}} John Smith, [http://planetmath.org/encyclopedia/ExampleOfPerfectTotientNumber.html Example of perfect totient number] su [[PlanetMath]].</ref>. <br/>
Se 9''p'' (=3²''p'') è un numero perfetto totiente, allora p è sempre un numero primo<ref name="Iannucci">{{Cita pubblicazione|autore=Iannucci, Douglas E., Deng, Moujie, Cohen, Graeme L.|titolo=On perfect totient numbers|rivista=Journal of Integer Sequences|volume=6|numero=4|anno=2003|url=http://www.emis.de/journals/JIS/VOL6/Cohen2/cohen50.pdf}}</ref>. Non si sa se ci siano numeri perfetti totienti nella forma 3<sup>''m''</sup>p, dove p è un numero primo
==Note==
|