Content deleted Content added
Added more information for Schur-Ostrowski criterion |
|||
Line 4:
A function <math>f</math> is 'Schur-concave' if its negative,<math>-f</math>, is Schur-convex.
==
If <math>f</math> is
<math>f</math> is Schur-convex if and only if
<math>(x_i - x_j)(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j}) \ge 0 </math> for all <math>x \in \mathbb{R}^d</math>
holds for all 1≤''i''≠''j''≤''d''.<ref>{{cite book|last1=E. Peajcariaac|first1=Josip|last2=L. Tong|first2=Y.|title=Convex Functions, Partial Orderings, and Statistical Applications|publisher=Academic Press|isbn=9780080925226|page=333}}</ref>
== Examples ==
Line 28 ⟶ 31:
* The [[Gini coefficient]] is strictly Schur concave.
== References ==
{{Reflist}}
==See also==
|