Content deleted Content added
No edit summary |
m Task 5: Fix CS1 deprecated coauthor parameter errors |
||
Line 23:
== Exchange functional ==
The exchange-energy density of a HEG is known analytically. The LDA for exchange employs this expression under the approximation that the exchange-energy in a system where the density in not homogeneous, is obtained by applying the HEG results pointwise, yielding the expression<ref name="parryang">{{cite book|last=Parr|first=Robert G|
:<math>E_{x}^{\mathrm{LDA}}[\rho] = - \frac{3}{4}\left( \frac{3}{\pi} \right)^{1/3}\int\rho(\mathbf{r})^{4/3}\ \mathrm{d}\mathbf{r}\ .</math>
Line 59:
:<math>E_{xc}^{\mathrm{LSDA}}[\rho_{\alpha},\rho_{\beta}] = \int\mathrm{d}\mathbf{r}\ \rho(\mathbf{r})\epsilon_{xc}(\rho_{\alpha},\rho_{\beta})\ .</math>
For the exchange energy, the exact result (not just for local density approximations) is known in terms of the spin-unpolarized functional:<ref>{{cite journal|last=Oliver|first=G. L.|
:<math>E_{x}[\rho_{\alpha},\rho_{\beta}] = \frac{1}{2}\bigg( E_{x}[2\rho_{\alpha}] + E_{x}[2\rho_{\beta}] \bigg)\ .</math>
Line 68:
<math>\zeta = 0\,</math> corresponds to the paramagnetic spin-unpolarized situation with equal
<math>\alpha\,</math> and <math>\beta\,</math> spin densities whereas <math>\zeta = \pm 1</math> corresponds to the ferromagnetic situation where one spin density vanishes. The spin correlation energy density for a given values of the total density and relative polarization, ''ε''<sub>c</sub>(''ρ'',''ς''), is constructed so to interpolate the extreme values. Several forms have been developed in conjunction with LDA correlation functionals.<ref name="vwn"/><ref>{{cite journal|last=von Barth|first=U.|
== Exchange-correlation potential ==
|