Local-density approximation: Difference between revisions

Content deleted Content added
No edit summary
Monkbot (talk | contribs)
Line 23:
== Exchange functional ==
 
The exchange-energy density of a HEG is known analytically. The LDA for exchange employs this expression under the approximation that the exchange-energy in a system where the density in not homogeneous, is obtained by applying the HEG results pointwise, yielding the expression<ref name="parryang">{{cite book|last=Parr|first=Robert G|coauthorsauthor2=Yang, Weitao |title=Density-Functional Theory of Atoms and Molecules|publisher=Oxford University Press|___location=Oxford |year=1994|isbn=978-0-19-509276-9}}</ref><ref>{{cite journal|last=Dirac|first=P. A. M.|year=1930|title=Note on exchange phenomena in the Thomas-Fermi atom|journal=Proc. Cambridge Phil. Roy. Soc.|volume=26|pages=376–385|doi=10.1017/S0305004100016108|issue=3|bibcode = 1930PCPS...26..376D }}</ref>
 
:<math>E_{x}^{\mathrm{LDA}}[\rho] = - \frac{3}{4}\left( \frac{3}{\pi} \right)^{1/3}\int\rho(\mathbf{r})^{4/3}\ \mathrm{d}\mathbf{r}\ .</math>
Line 59:
:<math>E_{xc}^{\mathrm{LSDA}}[\rho_{\alpha},\rho_{\beta}] = \int\mathrm{d}\mathbf{r}\ \rho(\mathbf{r})\epsilon_{xc}(\rho_{\alpha},\rho_{\beta})\ .</math>
 
For the exchange energy, the exact result (not just for local density approximations) is known in terms of the spin-unpolarized functional:<ref>{{cite journal|last=Oliver|first=G. L.|coauthorsauthor2=Perdew, J. P. |year=1979|title=Spin-density gradient expansion for the kinetic energy|journal=Phys. Rev. A|volume=20|pages=397–403|doi=10.1103/PhysRevA.20.397|bibcode = 1979PhRvA..20..397O|issue=2 }}</ref>
 
:<math>E_{x}[\rho_{\alpha},\rho_{\beta}] = \frac{1}{2}\bigg( E_{x}[2\rho_{\alpha}] + E_{x}[2\rho_{\beta}] \bigg)\ .</math>
Line 68:
 
<math>\zeta = 0\,</math> corresponds to the paramagnetic spin-unpolarized situation with equal
<math>\alpha\,</math> and <math>\beta\,</math> spin densities whereas <math>\zeta = \pm 1</math> corresponds to the ferromagnetic situation where one spin density vanishes. The spin correlation energy density for a given values of the total density and relative polarization, ''ε''<sub>c</sub>(''ρ'',''ς''), is constructed so to interpolate the extreme values. Several forms have been developed in conjunction with LDA correlation functionals.<ref name="vwn"/><ref>{{cite journal|last=von Barth|first=U.|coauthorsauthor2=Hedin, L. |year=1972|title=A local exchange-correlation potential for the spin polarized case|journal=J. Phys. C: Solid State Phys.|volume=5|pages=1629–1642|doi=10.1088/0022-3719/5/13/012|bibcode = 1972JPhC....5.1629V|issue=13 }}</ref>
 
== Exchange-correlation potential ==