Content deleted Content added
m →References: Task 3: Fix CS1 deprecated coauthor parameter errors |
The control Lyapunov function (CLF) is a function of x, i.e. V(x) not V(x,u). |
||
Line 1:
In [[control theory]], a '''control-Lyapunov function'''
More formally, suppose we are given
:<math>
\dot{x}
</math>
where <math>x\in\mathbf{R}^n</math> is the state vector and <math>u\in\mathbf{R}^m</math> is the control vector, and we want to feedback stabilize it to <math>x=0</math> in some ___domain <math>D\subset\mathbf{R}^n</math>.
'''Definition.''' A control-Lyapunov function is a function <math>V
:<math>
\forall x \ne 0, \exists u \qquad \dot{V}(x,u)=\nabla V(x) \cdot f(x,u) < 0.
</math>
Line 18:
It may not be easy to find a control-Lyapunov function for a given system, but if we can find one thanks to some ingenuity and luck, then the feedback stabilization problem simplifies considerably, in fact it reduces to solving a static non-linear [[optimization (mathematics)|programming problem]]
:<math>
u^*(x) = \arg\min_u \nabla V(x
</math>
for each state ''x''.
|