Content deleted Content added
Line 19:
To avoid confusion between various notions of reducibility to structured programs, it's important to note that McCabe's paper briefly discusses and then operates in the context of a 1973 paper by [[S. Rao Kosaraju]], which gave a refinement (or alternative view) of the [[structured program theorem]]. The seminal 1966 paper of Böhm and Jacopini showed that all programs can be [re]written using only structured programming constructs, (aka the D structures: sequence, if-then-else, and while-loop), however, in transforming a random program into a structured program additional variables may need to be introduced (and used in the tests) and some code may be duplicated.<ref name="WattFindlay2004">{{cite book|author1=David Anthony Watt|author2=William Findlay|title=Programming language design concepts|year=2004|publisher=John Wiley & Sons|isbn=978-0-470-85320-7|pages=228}}</ref>
In their paper, Böhm and Jacopini conjectured, but did not prove that it was necessary to introduce such additional variables for certain kinds of non-structured programs in order to transform them into structured programs.<Ref name="K">J. Computer and System Sciences, 9, 3 (December 1974), {{doi| 10.1016/S0022-0000(74)80043-7}}</ref>{{rp|236}} An example of program (that we now know) does require such additional variables is a loop with two conditional exits inside it. In order to address the conjecture of Böhm and Jacopini, Kosaraju defined a more restrictive notion of program reduction than the Turing equivalence used by Böhm and Jacopini. Essentially, Kosaraju's notion of reduction imposes, besides the obvious requirement that the two programs must compute the same value (or not finish) given the same inputs, that the two programs must use the same primitive actions and predicates, the latter understood as expressions used in the conditionals. Because of these restrictions, Kosaraju's reduction does not allow the introduction of additional variables; assigning to these variables would create new primitive actions and testing their values would change the predicates used in the conditionals. Using this more restrictive notion of reduction, Kosaraju proved Böhm and Jacopini's conjecture, namely that a loop with two
McCabe notes in his paper that in view of Kosaraju's results, he intended to find a way to capture the essential properties of non-structured programs.<ref name="mccabe76"/>{{rp|315}} He proceeds by first identifying the control flow graphs corresponding to the smallest non-structured programs (these include branching into a loop, branching out of a loop, and their if-then-else counterparts) which he uses to formulate a theorem analogous to [[Kuratowski's theorem]], and thereafter introduces his notion of essential complexity in order to give a scale answer ("measure of the
|