Frank–Wolfe algorithm: Difference between revisions

Content deleted Content added
some corrections per WP:MOS
Line 8:
 
==Algorithm==
[[File:Frank-Wolfe Algorithm.png|thumbnail|right|A step of the Frank-WolfeFrank–Wolfe algorithm]]
 
:''Initialization:'' Let <math>k \leftarrow 0</math>, and let <math>\mathbf{x}_0 \!</math> be any point in <math>\mathcal{D}</math>.
Line 46:
</math>
 
The latter optimization problem is solved in every iteration of the Frank-WolfeFrank–Wolfe algorithm, therefore the solution <math>\mathbf{s}_k</math> of the direction-finding subproblem of the <math>k</math>-th iteration can be used to determine increasing lower bounds <math>l_k</math> during each iteration by setting <math>l_0 = - \infty</math> and
 
:<math>
Line 62:
 
==Bibliography==
*{{cite journal|last=Jaggi|first=Martin|title=Revisiting Frank-WolfeFrank–Wolfe: Projection-Free Sparse Convex Optimization|journal=Journal of Machine Learning Research: Workshop and Conference Proceedings |volume=28|issue=1|pages=427–435|year= 2013 |url=http://jmlr.csail.mit.edu/proceedings/papers/v28/jaggi13.html}} (Overview paper)
*[http://www.math.chalmers.se/Math/Grundutb/CTH/tma946/0203/fw_eng.pdf The Frank-WolfeFrank–Wolfe algorithm] description
 
==External links==
Line 69:
 
== See also ==
* [[Proximal Gradientgradient Methodsmethods]]
 
{{Optimization algorithms|convex}}