Content deleted Content added
No edit summary |
|||
Line 40:
: <math>\int _0^z \frac {\tan(x) }{x} \, dx = \left(z+ \frac {1}{9} z^3 + \frac {2}{75} z^5 + \frac {17}{2205} z^7 + \frac {62}{25515} z^9+ \frac {1382}{1715175} z^{11}+ \frac {21844}{
79053975} z^{13} + \frac{929569}{9577693125} z^{15}+ O (z^{17}) \right)</math>
==Pade approximation==
<math>{\it Tainc} \left( z \right) = \left( 1-{\frac {7}{51}}\,{z}^{2}+{
\frac {1}{255}}\,{z}^{4}-{\frac {2}{69615}}\,{z}^{6}+{\frac {1}{
34459425}}\,{z}^{8} \right) \left( 1-{\frac {8}{17}}\,{z}^{2}+{\frac
{7}{255}}\,{z}^{4}-{\frac {4}{9945}}\,{z}^{6}+{\frac {1}{765765}}\,{z}
^{8} \right) ^{-1}
</math>
==Gallery==
{|
|