Content deleted Content added
→Coordinate transform to amplitude/phase variables: citation needed |
→Coordinate transform to amplitude/phase variables: avoid we, cfm MOS:MATH |
||
Line 100:
===Coordinate transform to amplitude/phase variables===
Straightforward algebra finds the coordinate transform{{citation needed}}
:<math>y=r\cos\theta +\frac1{32}\varepsilon r^3\cos3\theta +\frac1{1024}\varepsilon^2r^5(-21\cos3\theta+\cos5\theta)+\mathcal O(\varepsilon^3)</math>
transforms Duffing's equation into the pair that the radius is constant <math>dr/dt=0</math> and the phase evolves according to
:<math>\frac{d\theta}{dt}=1 +\frac38\varepsilon r^2 -\frac{15}{256}\varepsilon^2r^4 +\mathcal O(\varepsilon^3).</math>
That is, Duffing's oscillations are constant amplitude but a different frequencies depending upon the amplitude.<ref>{{citation |first=A.J. |last=Roberts |title=Modelling emergent dynamics in complex systems |url=http://www.maths.adelaide.edu.au/anthony.roberts/modelling.php |accessdate=2013-10-03 }}</ref>
More difficult examples are better treated using a time
==See also==
|