Quantum Fourier transform: Difference between revisions

Content deleted Content added
Definition: clarify the use of omega: roots of unity; define omega^jk for DFT instead of simply omega, define omega for matrix form
Definition: added N=4 example matrix
Line 33:
</math>
 
Here <math>\omega = e^{\frac{2 \pi i}{N}}</math> is a primitive ''N''<sup>th</sup> [[root of unity]]. For example, in the case of <math>N=4</math> we would find that <math>\omega = i</math>, so
:<math>
F_4 = \frac{1}{2} \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{bmatrix}.
</math>
 
== Properties ==