Content deleted Content added
Line 44:
If both real and imaginary parts of the tensor products of complex wavelets are considered, complex oriented dual tree CWT which is 2 times more expansive than real oriented dual tree CWT is obtained. So there are two wavelets oriented in each of the directions.
Although implementing complex oriented dual tree structure takes more resources, it is used in order to ensure an approximate shift invariance property that a complex analytical wavelet can provide in 1-D. In the 1-D case, it is required that the real part of the wavelet and the imaginary part are [[Hilbert transform]] pairs for the wavelet to be analytical and to exhibit shift invariance. Similarly in the M-D case, the real and imaginary parts of tensor products are made to be approximate Hilbert transform pairs in order to be analytic and shift invariant.<ref name=IEEEmag /><ref>{{cite journal|last1=Selesnick|first1=I.W.|title=Hilbert transform pairs of wavelet bases|journal=IEEE Signal Processing Letters|date=June 2001|volume=8|issue=6|page=170 - 173|
Consider an example for 2-D dual tree real oriented CWT:
|