Content deleted Content added
m Added terminology: zero-input and zero-state response |
|||
Line 6:
where <math>\mathbf{x}(t)</math> are the states of the system, <math>\mathbf{u}(t)</math> is the input signal, and <math>\mathbf{x}_0</math> is the initial condition at <math>t_0</math>. Using the state-transition matrix <math>\mathbf{\Phi}(t, \tau)</math>, the solution is given by:<ref name=baaschl>{{cite journal|last1=Baake|first1=Michael|last2=Schlaegel|first2=Ulrike|title=The Peano Baker Series|journal=Proceeding of the Steklov Institute of Mathematics|year=2011|volume=275|pages=155–159}}</ref><ref name=rugh>{{cite book|last1=Rugh|first1=Wilson|title=Linear System Theory|date=1996|publisher=Prentice Hall|___location=Upper Saddle River, NJ | isbn = 0-13-441205-2}}</ref>
: <math>\mathbf{x}(t)= \mathbf{\Phi} (t, t_0)\mathbf{x}(t_0)+\int_{t_0}^t \mathbf{\Phi}(t, \tau)\mathbf{B}(\tau)\mathbf{u}(\tau)d\tau</math>
The first term is known as the '''zero-input response''' and the second term is known as the '''zero-state response'''.
==Peano-Baker series==
|