Faddeev–LeVerrier algorithm: Difference between revisions

Content deleted Content added
Line 17:
Thus,
:<math>
M_1= I ~, \quad c_{n-1} = - \mathrm{tr} A ; \qquad M_2= A-I\mathrm{tr} A , \quad c_2c_{n-2}=-\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) ; \qquad
</math>
<math>M_3= A^2-A\mathrm{tr} A -\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) I, \quadqquad c_{n-3}=- \tfrac{1}{6}\bigl( (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3)\bigr);\quad~\cdots
</math> etc.
 
etc. Observe {{math|''A<sup>−1</sup> {{=}} − M<sub>n</sub> /c<sub>0</sub>'' {{=}} (−)<sup>''n''−1</sup>''M<sub>n</sub>''/det''A''}} as the recursion terminates at {{mvar| λ}}.
 
==Derivation==