Faddeev–LeVerrier algorithm: Difference between revisions

Content deleted Content added
Line 21:
<math>M_3= A^2-A\mathrm{tr} A -\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) I, \qquad c_{n-3}=- \tfrac{1}{6}\Bigl( (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3)\Bigr); \qquad \cdots </math> etc.
 
Observe {{math|''A<sup>−1</sup> {{=}} − M<sub>n</sub> /c<sub>0</sub>'' {{=}} (−)<sup>''n''−1</sup>''M<sub>n</sub>''/det''A''}} asterminates the recursion terminates at {{mvar| λ}}. This could be used to obtain the inverse or the determinant of {{mvar|A}}.
 
==Derivation==