Faddeev–LeVerrier algorithm: Difference between revisions

Content deleted Content added
No edit summary
Line 60:
and finally
:<math> c_{n-m} = -\frac{1}{m} \operatorname{tr}A M_{m} ~.</math>
This completes the recursion of the previous section, unfolding in descending powers of {{mvar|λ}}.
 
This completes the recursion of the previous section, unfolding in descending powers of {{mvar|λ}}. Further note in the algorithm that, more directly,
:<math> M_{m} =A M_{m-1} - \frac{1}{m-1} (\operatorname{tr}A M_{m-1}) I ~.,</math>
and
:<math> B =(-)^{n-1} M_{n}=(-)^{n-1} (A^{n-1}+c_{n-1}A^{n-2}+ ...+c_2 A+ c_1 I)~.</math>
 
 
<br>
A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}}<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. ISBN 978-0-521-46946-3, p. 54; Also see, Curtright, T. L. and Fairlie, D. B. (2012). "A Galileon Primer", arXiv:1212.6972 , section 3.</ref>
:<math>c_{n-m} = \frac{(-1)^m}{m!}