Fourier transform: Difference between revisions

Content deleted Content added
No edit summary
explained the Fourier transformation rules
Line 20:
<table border="1">
<tr>
<tdth>&nbsp;</tdth>
<th align=left>Signal</th>
<th align=left>Fourier transform</th>
Line 25 ⟶ 26:
</tr>
<tr>
<td>&nbsp;1.</td>
<td>''af''(''t'') + ''bg''(''t'')</td>
<td>''aF''(''s'') + ''bG''(''s'')</td>
Line 30 ⟶ 32:
</tr>
<tr>
<td>&nbsp;2.</td>
<td>''f''(''t'' - ''a'')</td>
<td>e<sup>-2&pi;''ias''</sup>'' F''(''s'')</td>
<td>Shift in time ___domain</td>
</tr>
<tr>
<td>&nbsp;3.</td>
<td>e<sup>2&pi;''iat''</sup>''f''(''t'')</td>
<td>''F''(''s''-''a'')</td>
<td>Shift in frequency ___domain</td>
</tr>
<tr>
<td>&nbsp;4.</td>
<td>''f''(''at'')</td>
<td>1/|''a''| ''F''(''s''/''a'') / |''a''|</td>
<td>If ''a'' is large, then ''f''(''at'') is concentrated around 0 and ''F''(''s''/''a'')/|''a''| spreads out and flattens</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>5.</td>
<td><em>f</em>&nbsp;'(''t'')</td>
<td>2&pi;''is'' ''F''(''s'')</td>
<td><em>f</em>&nbsp;'(''t'') is the (distribution) derivative of ''f''(''t'')</td>
</tr>
<tr>
<td>6.</td>
<td>''t'' ''f''(''t'')</td>
<td>1/(2&pi;''i'') <em>F</em>'(-''s'')</td>
<td>&nbsp;This is the inverse rule to 5.</td>
</tr>
<tr>
<td>7.</td>
<td>(''f'' * ''g'')(''t'')</td>
<td>''F''(''s'') ''G''(''s'')</td>
Line 60 ⟶ 68:
</tr>
<tr>
<td>8.</td>
<td>''f''(''t'') ''g''(''t'')</td>
<td>(''F'' * ''G'')(-''s'')</td>
<td>&nbsp;This is the inverse of 7.</td>
</tr>
<tr>
<td>9.</td>
<td>&delta;(''t'')</td>
<td>1</td>
<td>&delta;(''t'') denotes the [[Dirac delta]] distribution.</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>&delta;(''s'')</td>
<td>Inverse of 9. This rule shows why the Dirac delta is important: it shows up as the Fourier transform of everyday functions.</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&delta;(''t''-''a'')</td>
<td>e<sup>-2&pi;''ias''</sup></td>
<td>&nbsp;</td>
</tr>
<tr>
<td>11.</td>
<td>''t''<sup>''n''</sup></td>
<td>(-1)<sup>''n''(''n''+1)/2</sup>/(-2&pi;''i'')<sup>''n''</sup> &delta<sup>(''n'')</sup>((-1)<sup>''n''</sup>''s'')</td>
<td>(Here, ''n''needs tois bea checked'')[[natural number]]. &delta<sup>(''n'')</sup>(''s'') is the ''n''-th distribution derivative of the Dirac delta. This rule follows from rules 6. and 10. Combining this rule with 1., we can transform all [[polynomial]]s.</td>
</tr>
<tr>
<td>12.</td>
<td>e<sup>2&pi;''iat''</sup></td>
<td>&delta;(''s''-''a'')</td>
<td>&nbsp;This follows from and 3. and 10.</td>
</tr>
<tr>
<td>13.</td>
<td>cos(2&pi;''at'')</td>
<td>1/2 ( &delta; (''s'' - ''a'') + &delta;(''s'' + ''a'') )</td>
<td>Follows from rules 1 and 13 using cos(2&pi;''at'') = 1/2 ( e<sup>2&pi;''iat''</sup> + e<sup>-2&pi;''iat''</sup> ) ([[Eulers formula in complex analysis|Euler's formula]])</td>
<td>&nbsp;</td>
</tr>
<td>14.</td>
<td>sin(2&deltapi;(''t''-''aat'')</td>
<td>1/(2''i'') ( &delta; (''s'' - ''a'') - &delta;(''s'' + ''a'') )</td>
<td>Also from 1 and 12.</td>
</tr>
<tr>
<td>15.</td>
<td>exp(-''a'' ''t''<sup>2</sup>)</td>
<td>(&pi;/''a'')<sup>1/2</sup> exp(-&pi;<sup>2</sup> ''s''<sup>2</sup> / ''a'')</td>
<td>Shows that the [[Normal distribution|Gaussian function]] exp(-&pi; ''t''<sup>2</sup>) is its own Fourier-transform</td>
<td>&nbsp;</td>
</tr>
</table>