Content deleted Content added
No edit summary |
explained the Fourier transformation rules |
||
Line 20:
<table border="1">
<tr>
<th align=left>Signal</th>
<th align=left>Fourier transform</th>
Line 25 ⟶ 26:
</tr>
<tr>
<td>''af''(''t'') + ''bg''(''t'')</td>
<td>''aF''(''s'') + ''bG''(''s'')</td>
Line 30 ⟶ 32:
</tr>
<tr>
<td>''f''(''t'' - ''a'')</td>
<td>e<sup>-2π''ias''</sup>'' F''(''s'')</td>
<td>Shift in time ___domain</td>
</tr>
<tr>
<td>e<sup>2π''iat''</sup>''f''(''t'')</td>
<td>''F''(''s''-''a'')</td>
<td>Shift in frequency ___domain</td>
</tr>
<tr>
<td>''f''(''at'')</td>
<td>
<td>If ''a'' is large, then ''f''(''at'') is concentrated around 0 and ''F''(''s''/''a'')/|''a''| spreads out and flattens</td>
▲<td> </td>
</tr>
<tr>
<td>5.</td>
<td><em>f</em> '(''t'')</td> <td>2π''is'' ''F''(''s'')</td>
<td><em>f</em> '(''t'') is the (distribution) derivative of ''f''(''t'')</td>
</tr>
<tr>
<td>6.</td>
<td>''t'' ''f''(''t'')</td>
<td>1/(2π''i'') <em>F</em>'(-''s'')</td>
<td>
</tr>
<tr>
<td>7.</td>
<td>(''f'' * ''g'')(''t'')</td>
<td>''F''(''s'') ''G''(''s'')</td>
Line 60 ⟶ 68:
</tr>
<tr>
<td>8.</td>
<td>''f''(''t'') ''g''(''t'')</td>
<td>(''F'' * ''G'')(-''s'')</td>
<td>
</tr>
<tr>
<td>9.</td>
<td>δ(''t'')</td>
<td>1</td>
<td>δ(''t'') denotes the [[Dirac delta]] distribution.</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>δ(''s'')</td>
<td>Inverse of 9. This rule shows why the Dirac delta is important: it shows up as the Fourier transform of everyday functions.</td>
▲<td> </td>
</tr>▼
<td>δ(''t''-''a'')</td>▼
▲<td> </td>
</tr>
<tr>
<td>11.</td>
<td>''t''<sup>''n''</sup></td>
<td>(-1)<sup>''n''(''n''+1)/2</sup>/(
<td>
</tr>
<tr>
<td>12.</td>
<td>e<sup>2π''iat''</sup></td>
<td>δ(''s''-''a'')</td>
<td>
</tr>
<tr>
<td>13.</td>
<td>cos(2π''at'')</td>
<td>1/2 ( δ (''s'' - ''a'') + δ(''s'' + ''a'') )</td>
<td>Follows from rules 1 and 13 using cos(2π''at'') = 1/2 ( e<sup>2π''iat''</sup> + e<sup>-2π''iat''</sup> ) ([[Eulers formula in complex analysis|Euler's formula]])</td>
▲<td> </td>
▲</tr>
<td>14.</td>
<td>1/(2''i'') ( δ (''s'' - ''a'') - δ(''s'' + ''a'') )</td>
<td>Also from 1 and 12.</td>
</tr>
<tr>
<td>15.</td>
<td>exp(-''a'' ''t''<sup>2</sup>)</td>
<td>(π/''a'')<sup>1/2</sup> exp(-π<sup>2</sup> ''s''<sup>2</sup> / ''a'')</td>
<td>Shows that the [[Normal distribution|Gaussian function]] exp(-π ''t''<sup>2</sup>) is its own Fourier-transform</td>
▲<td> </td>
</tr>
</table>
|