Ring of symmetric functions: Difference between revisions

Content deleted Content added
m Reverted edits by CBM (talk) to last version by Yobot
this page had wrong interwikis whih are strongly connected to another article + added section
Line 6:
== Symmetric polynomials ==
 
{{ main article | Symmetric polynomial }}
 
The study of symmetric functions is based on that of symmetric polynomials. In a [[polynomial ring]] in some finite set of indeterminates, a polynomial is called ''symmetric'' if it stays the same whenever the indeterminates are permuted in any way. More formally, there is an [[group action|action]] by [[ring homomorphism|ring automorphism]]s of the [[symmetric group]] ''S<sub>n</sub>'' on the polynomial ring in ''n'' indeterminates, where a permutation acts on a polynomial by simultaneously substituting each of the indeterminates for another according to the permutation used. The [[Invariant (mathematics)#Unchanged under group action|invariants]] for this action form the subring of symmetric polynomials. If the indeterminates are ''X''<sub>1</sub>,&hellip;,''X''<sub>''n''</sub>, then examples of such symmetric polynomials are
Line 119:
 
==See also==
* The ring of symmetric functions is the [[Exp ring]] of the integers.
 
* [[Newton's identities]]
*The ring of symmetric functions is the [[Exp ring]] of the integers.
* [[Quasisymmetric function]]
*[[Newton's identities]]
*[[Quasisymmetric function]]
 
==References==
{{Reflist}}
 
==Further reading==
<div class="references">
* Macdonald, I. G. ''Symmetric functions and Hall polynomials.'' Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 1979. viii+180 pp.&nbsp;ISBN 0-19-853530-9 {{MathSciNet|id=84g:05003}}
<references/>
* Macdonald, I. G. ''Symmetric functions and Hall polynomials.'' Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp.&nbsp;ISBN 0-19-853489-2 {{MathSciNet|id=96h:05207}}
</div>
* [[Richard P. Stanley|Stanley, Richard P.]] ''Enumerative Combinatorics'', Vol. 2, Cambridge University Press, 1999. ISBN 0-521-56069-1 (hardback) ISBN 0-521-78987-7 (paperback).
 
*Macdonald, I. G. ''Symmetric functions and Hall polynomials.'' Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 1979. viii+180 pp.&nbsp;ISBN 0-19-853530-9 {{MathSciNet|id=84g:05003}}
*Macdonald, I. G. ''Symmetric functions and Hall polynomials.'' Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp.&nbsp;ISBN 0-19-853489-2 {{MathSciNet|id=96h:05207}}
*[[Richard P. Stanley|Stanley, Richard P.]] ''Enumerative Combinatorics'', Vol. 2, Cambridge University Press, 1999. ISBN 0-521-56069-1 (hardback) ISBN 0-521-78987-7 (paperback).
 
[[Category:Polynomials]]
Line 140 ⟶ 137:
[[Category:Permutations]]
[[Category:Types of functions]]
 
[[eo:Simetria funkcio]]
[[it:Funzione simmetrica]]
[[fi:Symmetrinen funktio]]