Processo stocastico: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m ortografia |
m Bot: fix citazione web (v. discussione) |
||
Riga 15:
Fissando un istante di tempo <math>\tilde{t}</math>, è possibile individuare valori generalmente differenti, ognuno relativo ad una determinata realizzazione e quindi ad un elemento dello spazio campione: <math>X(\tilde{t})</math> è allora una variabile aleatoria e rappresenta la "fotografia" del processo stocastico in un determinato istante, quindi, rispetto ad una semplice variabile aleatoria, esso fornisce anche un'informazione relativa all'evoluzione temporale.
Per descrivere un processo aleatorio è sufficiente utilizzare la [[funzione di densità di probabilità|funzione di densità di probabilità congiunta]], o, analogamente, la [[
Lo spazio della variabile tempo, cioè l'insieme <math>T=\{t_i, i=1,2,\ldots,n\}</math>, può essere continuo o discreto: nel primo caso si parla di processo stocastico "continuo nel tempo" (o processo stocastico tempo-continuo), mentre nel secondo caso si parla di processo stocastico "discreto nel tempo" (o processo stocastico tempo-discreto). In alternativa si usa la formulazione "processo stocastico a parametro discreto" o "continuo".
L'insieme dei valori che possono assumere le realizzazioni costituisce il suddetto [[stato di sistema|spazio degli stati]] del processo e rappresenta le "situazioni" descritte dalle variabili casuali e indicate per esempio con <math>s_0,s_1,s_2,\ldots</math>. Tale insieme può essere continuo o discreto: in quest'ultimo caso, che implica la numerabilità degli stati, il processo aleatorio viene definito [[catena]].
Se la variabile casuale è [[variabile casuale discreta|discreta]] allora si parla di "[[processo stocastico discreto]]", se invece è una [[variabile casuale continua]] allora si parla di "[[processo stocastico continuo]]" (sottinteso "nello spazio degli eventi").
Riga 42:
==Collegamenti esterni==
*{{
*{{
*
{{Probabilità}}
|