Content deleted Content added
Marcocapelle (talk | contribs) more specific categorisation |
m Journal cites: fix page range, using AWB (12158) |
||
Line 3:
==Details==
The random modulation procedure starts with two stochastic [[
:<math>x(t)=x_c(t)\cos(2 \pi f_0 t)-x_s(t)\sin(2 \pi f_0 t)= \Re \left \{ \underline{x}(t)e^{j 2 \pi f_0 t}\right \} ,</math>
where <math>\underline{x}(t)</math> is the [[
:<math>\underline{x}(t)=x_c(t)+j x_s(t).</math>
In the following it is assumed that <math>x_c(t)</math> and <math>x_s(t)</math> are two real jointly [[
:<math>R_{x_c x_c}(\tau)=R_{x_s x_s}(\tau) \qquad \text{and }\qquad R_{x_c x_s}(\tau)=-R_{x_s x_c}(\tau).</math>
Line 16:
*{{cite book |title=Probability, random variables and stochastic processes |last1= Papoulis|first1= Athanasios|authorlink1= Athanasios Papoulis|first2=S. Unnikrishna|last2= Pillai |year= 2002|publisher= McGraw-Hill Higher Education|edition= 4th|chapter=Random walks and other applications|pages=463–473}}
*{{cite book |title=Segnali, Processi Aleatori, Stima |last1= Scarano|first1= Gaetano|year= 2009|publisher= Centro Stampa d'Ateneo|language=it}}
*{{Cite journal | last1 = Papoulis | first1 = A. | doi = 10.1109/TASSP.1983.1164046 | title = Random modulation: A review | journal = IEEE Transactions on Acoustics, Speech, and Signal Processing | volume = 31 | pages =
{{DEFAULTSORT:Random Modulation}}
[[Category:Statistical signal processing]]
{{Signal-processing-stub}}
|