Content deleted Content added
Magioladitis (talk | contribs) m clean up using AWB |
No edit summary |
||
Line 1:
A '''minimax approximation algorithm''' (or '''L<sup>∞</sup> approximation''' or '''uniform approximation''') is a method to find an approximation of a [[mathematical function]] that minimizes maximum error.<ref name="Muller_2010">{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9<!-- print --> |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668<!-- |id=ISBN 978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) --> |page=376}}</ref>
For example, given a function <math>f</math> defined on the interval <math>[a,b]</math> and a degree bound <math>n</math>, a minimax polynomial approximation algorithm will find a polynomial <math>p</math> of degree at most <math>n</math> to minimize<ref name="powell">{{cite book | chapter = 7: The theory of minimax approximation | first = M. J. D. | last= Powell | authorlink=Michael J. D. Powell | year = 1981 | publisher= Cambridge University Press | title = Approximation Theory and Methods | isbn = 0521295149}}</ref>
|