Subharmonic function: Difference between revisions

Content deleted Content added
m italic e's and i's
Line 43:
One can show that a real-valued, continuous function <math>\varphi</math> of a complex variable (that is, of two real variables) defined on a set <math>G\subset \mathbb{C}</math> is subharmonic if and only if for any closed disc <math>D(z,r) \subset G</math> of center <math>z</math> and radius <math>r</math> one has
 
:<math> \varphi(z) \leq \frac{1}{2\pi} \int_0^{2\pi} \varphi(z+ r \mathrm{e}re^{i\theta}) \, d\theta. </math>
 
Intuitively, this means that a subharmonic function is at any point no greater than the [[arithmetic mean|average]] of the values in a circle around that point, a fact which can be used to derive the [[maximum principle]].
Line 60:
=== Subharmonic functions in the unit disc. Radial maximal function ===
Let ''φ'' be subharmonic, continuous and non-negative in an open subset ''Ω'' of the complex plane containing the closed unit disc ''D''(0,&nbsp;1). The ''radial maximal function'' for the function ''φ'' (restricted to the unit disc) is defined on the unit circle by
:<math> (M \varphi)(\mathrm{e}^{\mathrm{i} \theta}) = \sup_{0 \le r < 1} \varphi(r \mathrm{e}re^{\mathrm{i} \theta}). </math>
If ''P''<sub>''r''</sub> denotes the [[Poisson kernel]], it follows from the subharmonicity that
:<math> 0 \le \varphi(r \mathrm{e}re^{\mathrm{i} \theta}) \le \frac{1}{2\pi} \int_0^{2\pi} P_r\left(\theta- t\right) \varphi\left(\mathrm{e}^{\mathrm{i} tit}\right) \, \mathrm{d} t, \ \ \ r < 1.</math>
It can be shown that the last integral is less than the value at e<sup>&nbsp;i''θ''</sup> of the [[Hardy–Littlewood maximal function]] ''φ''<sup>∗</sup> of the restriction of ''φ'' to the unit circle '''T''',
:<math> \varphi^*(\mathrm{e}^{\mathrm{i} \theta}) = \sup_{0 < \alpha \le \pi} \frac{1}{2 \alpha} \int_{\theta - \alpha}^{\theta + \alpha} \varphi\left(\mathrm{e}^{\mathrm{i} tit}\right) \, \mathrm{d}t,</math>
so that 0&nbsp;≤ ''M''&nbsp;''φ''&nbsp;≤ ''φ''<sup>∗</sup>. It is known that the Hardy–Littlewood operator is bounded on [[Lp space|''L''<sup>''p''</sup>('''T''')]] when 1&nbsp;< ''p''&nbsp;< ∞.
It follows that for some universal constant ''C'',
 
::<math> \|M \varphi\|_{L^2(\mathbf{T})}^2 \le C^2 \, \int_0^{2\pi} \varphi(\mathrm{e}^{\mathrm{i} \theta})^2 \, \mathrm{d}\theta.</math>
 
If ''f'' is a function holomorphic in ''Ω'' and 0&nbsp;< ''p''&nbsp;< ∞, then the preceding inequality applies to ''φ''&nbsp;= |''f''<sup>&nbsp;</sup>|<sup>&nbsp;''p''/2</sup>. It can be deduced from these facts that any function ''F'' in the classical Hardy space ''H<sup>p</sup>'' satisfies
::<math> \int_0^{2\pi} \Bigl( \sup_{0 \le r < 1} |F(r \mathrm{e}re^{\mathrm{i} \theta})| \Bigr)^p \, \mathrm{d}\theta \le C^2 \, \sup_{0 \le r < 1} \int_0^{2\pi} |F(r \mathrm{e}re^{\mathrm{i} \theta})|^p \, \mathrm{d}\theta.</math>
With more work, it can be shown that ''F'' has radial limits ''F''(e<sup>&nbsp;i''θ''</sup>) almost everywhere on the unit circle, and (by the [[dominated convergence theorem]]) that ''F<sub>r</sub>'', defined by ''F<sub>r</sub>''(e<sup>&nbsp;i''θ''</sup>)&nbsp;= ''F''(''r''<sup>&nbsp;</sup>e<sup>&nbsp;i''θ''</sup>) tends to ''F'' in ''L''<sup>''p''</sup>('''T''').