Modulational instability: Difference between revisions

Content deleted Content added
No edit summary
Line 107:
:<math>\beta_2^2\omega_m^2 + 2 \gamma P \beta_2 < 0</math>
 
This condition describes both the requirement for anomalous dispersion (such that <math>\beta_2</math> is negative) and the requirement that a threshold power be exceeded. The gain spectrum can be described by defining a gain parameter as <math>g</math> <math>\equiv</math> <math>\Im\left [ 2|k_m|\right ]</math>, so that the power of a perturbing signal grows with distance as <math>P</math> <math>\propto</math> <math>e^{g z}</math>. The gain is therefore given by
 
:<math>g = \begin{cases} 2\sqrt{-\beta_2^2\omega_m^4-2\gamma P \beta_2\omega_m^2} &;\, -\beta_2^2\omega_m^2 - 2 \gamma P \beta_2 > 0 \\ 0 &;\, -\beta_2^2\omega_m^2 - 2 \gamma P \beta_2 \leq 0\end{cases} </math>