Content deleted Content added
→Derivation for a circular orbit: added way to estimate inclination |
|||
Line 37:
<math>\frac{M_{2}^{3}}{M_\mathrm{tot}^{2}} = \frac{\omega_\mathrm{orb}^{2} a_{1}^{3}}{G}.</math>
The peak radial velocity of object 1, <math>K</math>, depends on the orbital inclination <math>i</math> (an inclination of 0° corresponds to an orbit seen face-on, an inclination of 90° corresponds to an orbit seen edge-on). For a circular orbit ([[orbital eccentricity]]
<math>K = v_{1} \mathrm{sin} i = \omega_\mathrm{orb} a_{1} \mathrm{sin} i.</math>
|