Regime ipersonico: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Riga 26:
Ovviamente anche il regime ipersonico richiede tali parametri: innanzitutto, l' equazione che governa l'angolo dell' [[onda d'urto]] tende a diventare indipendente dal numero di Mach dai 10 Mach in avanti; in secondo luogo, la formazione di intense onde d'urto attorno al corpo in volo indica che il numero di Reynolds diviene meno rilevante nella descrizione dello [[strato limite]] del corpo (benché resti comunque importante); infine, le elevate temperature del regime ipersonico segnalano l'importanza degli effetti dei [[gas|gas reali]]. Per questo ultimo motivo, lo studio del regime ipersonico è spesso denominato "'''aerotermodinamica'''".
L'introduzione dei gas reali richiede un numero superiore di variabili necessarie alla descrizione dello stato del gas: mentre un gas stazionario è caratterizzato da tre parametri (la [[pressione]], la [[temperatura]] e il [[volume]]) e un gas in movimento da quattro (i tre precedenti più la [[velocità]]), un gas ad elevate temperature e in equilibrio chimico richiede delle equazioni di stato per ogni suo componente, mentre un gas non in equilibrio è descritto da queste equazioni se si aggiunge un'ulteriore variabile, cioé il tempo. Tutto questo significa che per descrivere un flusso non all'equilibrio in ogni sitante temporale servono tra le 10 e le 100 variabili; inoltre, si deve ricordare che un flusso ipersonico rarefatto (solitamente caratterizzato da un [[numero di Knudsen]] superiore a uno) non segue le [[equazioni di Navier-Stokes]].
I regimi ipersonici vengono solitamente classificati in base alla loro energia totale, espressa come [[entalpia]] totale (in MJ/kg), pressione totale (in kPa o MPa), pressione di stagnazione (sempre in kPa o MPa), temperatura di stagnazione (in K), o velocità (in km/s).
==Regimi ipersonici==
==Voci correlate==
|