Arithmetic functions which are completely additive are:
* The restriction of the [[logarithm|logarithmic function]] to '''N''', ''a''<sub>0</sub>(''n'') - the sum of primes dividing ''n'', sometimes called sopfr(''n''). We have ''a''<sub>0</sub>(20) = ''a''<sub>0</sub>(2<sup>2</sup> · 5) = 2 + 2+ 5 = 9. Some values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001414 OEISSIDN A001414]).
::''a''<sub>0</sub>(4) = 4
:: ...
* ''a''<sub>1</sub>(''n'') - the sum of the distinct primes dividing ''n'', sometimes called sopf(''n''). We have ''a''<sub>1</sub>(1) = 0, ''a''<sub>1</sub>(20) = 2 + 5 = 7. Some more values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A008472 OEISSIDN A008472])
::''a''<sub>1</sub>(4) = 2
:: ...
* The function OΩ(''n''), defined as the total number of [[prime number|prime]] factors of ''n'', counting multiple factors multiple times. It is often called "[[Big Omega function]]".This implies OΩ(1) = 0 since 1 has no prime factors. Some more values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001222 OEISSIDN A001222])
::OΩ(4) = 2
::OΩ(27) = 3
::OΩ(144) = OΩ(2<sup>4</sup> · 3<sup>2</sup>) = OΩ(2<sup>4</sup>) + OΩ(3<sup>2</sup>) = 4 + 2 = 6
::OΩ(2,000) = OΩ(2<sup>4</sup> · 5<sup>3</sup>) = OΩ(2<sup>4</sup>) + OΩ(5<sup>3</sup>) = 4 + 3 = 7
::OΩ(2,001) = 3
::OΩ(2,002) = 4
::OΩ(2,003) = 1
::OΩ(54,032,858,972,279) = 3
::OΩ(54,032,858,972,302) = 6
::OΩ(20,802,650,704,327,415) = 7
:: ...
* An example of an arithmetic function which is additive but not completely additive is ?ω(''n''), defined as the total number of ''different'' [[prime number|prime]] factors of ''n''. Some values (compare with OΩ(''n'')) ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001221 OEISSIDN A001221])
:
::?ω(4) = 1
::?ω(27) = 1
::?ω(144) = ?ω(2<sup>4</sup> · 3<sup>2</sup>) = ?ω(2<sup>4</sup>) + ?ω(3<sup>2</sup>) = 1 + 1 = 2
::?ω(2,000) = ?ω(2<sup>4</sup> · 5<sup>3</sup>) = ?ω(2<sup>4</sup>) + ?ω(5<sup>3</sup>) = 1 + 1 = 2
::?ω(2,001) = 3
::?ω(2,002) = 4
::?ω(2,003) = 1
::?ω(54,032,858,972,279) = 3
::?ω(54,032,858,972,302) = 5
::?ω(20,802,650,704,327,415) = 5
:: ...
== References ==
# Janko BracicBračič, ''Kolobar aritmeticniharitmetičnih funkcij'' (''[[Ring (algebra)|Ring]] of arithmetical functions''), (Obzornik mat, fiz. '''49''' (2002) 4, pp 97 - 108) <font color=darkblue> (MSC (2000) 11A25) </font>
== See also ==
[[it:Funzione additiva]]
[[sv:Additiv funktion]]
[[zh:????加性函數]]
|