Content deleted Content added
m →Other group structures: cite repair; |
m Journal cites: fix page range, using AWB (12158) |
||
Line 24:
The general form of Moreau's decomposition states that for any <math>x\in\mathcal{X}</math> and any <math>\gamma>0</math> that
:<math>x = \operatorname{prox}_{\gamma \varphi}(x) + \gamma\operatorname{prox}_{\varphi^*/\gamma}(x/\gamma),</math>
which for <math>\gamma=1</math> implies that <math>x = \operatorname{prox}_{\varphi}(x)+\operatorname{prox}_{\varphi^*}(x)</math>.<ref name=combettes /><ref name=moreau>{{cite journal|last=Moreau|first=J.-J.|title=Fonctions convexes duales et points proximaux dans un espace hilbertien|journal=C. R. Acad. Sci. Paris Ser. A Math.|year=1962|volume=255|pages=
In certain situations it may be easier to compute the proximity operator for the conjugate <math>\varphi^*</math> instead of the function <math>\varphi</math>, and therefore the Moreau decomposition can be applied. This is the case for [[Lasso (statistics)#Group LASSO|group lasso]].
Line 90:
In the fixed point iteration scheme
:<math>w^{k+1} = \operatorname{prox}_{\gamma R}\left(w^k-\gamma \nabla F\left(w^k\right)\right),</math>
one can allow variable step size <math>\gamma_k</math> instead of a constant <math>\gamma</math>. Numerous adaptive step size schemes have been proposed throughout the literature.<ref name=combettes /><ref name=bauschke /><ref>{{cite journal|last=Loris|first=I. |author2=Bertero, M. |author3=De Mol, C. |author4=Zanella, R. |author5=Zanni, L. |title=Accelerating gradient projection methods for <math>\ell_1</math>-constrained signal recovery by steplength selection rules|journal=Applied & Comp. Harmonic Analysis|volume=27|issue=2|pages=247–254|year=2009|doi=10.1016/j.acha.2009.02.003}}</ref><ref>{{cite journal|last=Wright|first=S.J.|author2=Nowak, R.D. |author3=Figueiredo, M.A.T. |title=Sparse reconstruction by separable approximation|journal=IEEE Trans. Image Process.|year=2009|volume=57|issue=7|pages=2479–2493|doi=10.1109/TSP.2009.2016892}}</ref> Applications of these schemes<ref name=structSparse /><ref>{{cite journal|last=Loris|first=Ignace|title=On the performance of algorithms for the minimization of <math>\ell_1</math>-penalized functionals|journal=Inverse Problems|year=2009|volume=25|issue=3|doi=10.1088/0266-5611/25/3/035008|page=035008}}</ref> suggest that these can offer substantial improvement in number of iterations required for fixed point convergence.
=== Elastic net (mixed norm regularization) ===
|