Content deleted Content added
mention dimensionality reduction |
|||
Line 2:
* There are methods to calculate it with lower asymptotic time complexity versus the SVD.
* The matrices are more interpretable; The meanings of rows and columns in the decomposed matrix are essentially
Formally, a CUR matrix approximation of a matrix ''A'' is three matrices ''C'', ''U'', and ''R'' such that ''C'' is made from columns of ''A'', ''R'' is made from rows of ''A'', and that the product ''CUR'' closely approximates ''A''. Usually the CUR is selected to be a [[Rank (linear algebra)|rank]]-''k'' approximation, which means that ''C'' contains ''k'' columns of ''A'', ''R'' contains ''k'' rows of ''A'', and ''U'' is a ''k''-by-''k'' matrix. There are many possible CUR matrix approximations, and many CUR matrix approximations for a given rank.
The CUR matrix approximation is often {{
==Algorithms==
|