Content deleted Content added
→Multiplication: Invert order in the 2nd equation as it is hard to tell the difference if we inverse X_1 and X_2. |
|||
Line 45:
or,
: {{NumBlk|:|<math> x_1(n_1,\ldots,n_M) x_2(n_1,\ldots,n_M) \overset{\underset{\mathrm{FT}}{}}{\longleftrightarrow} \frac{1}{(2\pi)^M} \int\limits_{-\pi}^\pi \cdots \int\limits_{-\pi}^\pi X_1(\theta_1,\ldots,\theta_M) X_2(\omega_1 - \theta_1,\ldots,\omega_M - \theta_M)
====Differentiation====
|