Taylor scraping flow: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 1:
{{multiple issues|
{{refimprove|date=May 2017}}
{{technical|date=May 2017}}
{{underlinked|date=May 2017}}
In [[fluid dynamics]], '''Taylor scraping flow''' is a type of two-dimensional [[corner flow]] when one of the wall is sliding over the other with constant velocity, named after [[G. I. Taylor]]<ref>Taylor, G. I. "Similarity solutions of hydrodynamic problems." Aeronautics and Astronautics 4 (1960): 214.</ref><ref>Taylor, G. I. "On scraping viscous fluid from a plane surface." Miszellangen der Angewandten Mechanik (Festschrift Walter Tollmien) (1962): 313-315.</ref><ref>Taylor, G. I. "Scientific Papers (edited by GK Bachelor)." (1958): 467.</ref>.
}}
In fluid dynamics, '''Taylor scraping flow''' is a type of two-dimensional [[corner flow]] when one of the wall is sliding over the other with constant velocity, named after [[G. I. Taylor]]<ref>Taylor, G. I. "Similarity solutions of hydrodynamic problems." Aeronautics and Astronautics 4 (1960): 214.</ref><ref>Taylor, G. I. "On scraping viscous fluid from a plane surface." Miszellangen der Angewandten Mechanik (Festschrift Walter Tollmien) (1962): 313-315.</ref><ref>Taylor, G. I. "Scientific Papers (edited by GK Bachelor)." (1958): 467.</ref>.
 
==Flow description==
Line 23 ⟶ 20:
</math>
 
==Solution<ref>Acheson, David J. Elementary fluid dynamics. Oxford University Press, 1990.</ref><ref>Pozrikidis, Costas, and Joel H. Ferziger. "Introduction to theoretical and computational fluid dynamics." (1997): 72-74.</ref>==
==Solution==
 
Introducing the [[separation of variables]] as <math>\psi =U r f(\theta)</math> reduces the problem to