Content deleted Content added
Undid revision 782137843 by 202.58.86.24 (talk) unexplained |
Magioladitis (talk | contribs) m clean up, replaced: ISBN 0-12-564911-8 → {{ISBN|0-12-564911-8}} using AWB (12151) |
||
Line 6:
{{main|Linear regression}}
For the regression case, the [[statistical model]] is as follows. Given a (random) sample <math> (Y_i, X_{i1}, \ldots, X_{ip}), \, i = 1, \ldots, n </math> the relation between the observations ''Y<sub>i</sub>'' and the [[independent variables]] ''X<sub>ij</sub>'' is formulated as
:<math>Y_i = \beta_0 + \beta_1 \phi_1(X_{i1}) + \cdots + \beta_p \phi_p(X_{ip}) + \varepsilon_i \qquad i = 1, \ldots, n </math>
Line 28:
:<math> X_t = c + \varepsilon_t + \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}.\,</math>
where again the quantities ''ε<sub>t</sub>'' are random variables representing [[Innovation (signal processing)|innovations]] which are new random effects that appear at a certain time but also affect values of ''X'' at later times. In this instance the use of the term "linear model" refers to the structure of the above relationship in representing ''X<sub>t</sub>'' as a linear function of past values of the same time series and of current and past values of the innovations.<ref>Priestley, M.B. (1988) ''Non-linear and Non-stationary time series analysis'', Academic Press. {{ISBN
==Other uses in statistics==
There are some other instances where "nonlinear model" is used to contrast with a linearly structured model, although the term "linear model" is not usually applied. One example of this is [[nonlinear dimensionality reduction]].
==See also==
|