Local linearization method: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 193:
\mathbf{r}\right\vert \varpropto h^{p+q+1}.</math>
 
If <math>\mathbf{\mathbf{k}}_{m,k}^{p,q}(h,\mathbf{H},\mathbf{r})</math> denotes the ''(m; p; q; k)'' [[Krylov subspace|Krylov-Padé approximation]] of <math>e^{h\mathbf{H}}\mathbf{r}</math>
 
<math>\left\vert \sum\nolimits_{i=1}^{l}\phi _{i}(\mathbf{A},h)\mathbf{a}_{i}-
Line 216:
<math>\mathbf{L}=\left[
\begin{array}{ll}
\mathbf{I}_{d} & \mathbf{0}_{d\times 2}%
\end{array}%
\right]</math>and <math>\mathbf{r}^{\intercal }=\left[
\begin{array}{ll}
Line 612:
 
==== Order 1.5 SLL schemes ====
<small><math>\mathbf{y}_{n+1} =\mathbf{y}_{n}+\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_{n}}
\mathbf{M}_{n}h_{n}))^{2^{k_{n}}}\mathbf{r}
+\sum\limits_{i=1}^{m}\left( \mathbf{g}_{i}(t_{n})\Delta \mathbf{w}
_{n}^{i}+\mathbf{f}_{\mathbf{x}}(t_{n},\widetilde{\mathbf{y}}_{n})\mathbf{g}
_{i}(t_{n})\Delta \mathbf{z}_{n}^{i}+\frac{d\mathbf{g}_{i}(t_{n})}{dt}
(\Delta \mathbf{w}_{n}^{i}h_{n}-\Delta \mathbf{z}_{n}^{i})\right) , (16)</math></small>