Content deleted Content added
rm inappropriately broad cat |
m cleanup, typo(s) fixed: Therefore → Therefore,, , → , using AWB |
||
Line 3:
==Flow description==
Consider a plane wall located at <math>\theta=0</math> in the cylindrical coordinates <math>(r,\theta)</math>, moving with a constant velocity <math>U</math> towards the left. Consider an another plane wall(scraper)
Taylor noticed that the inertial terms are negligible as long as the region of interest is within <math>r\ll\nu/U</math>( or, equivalently [[Reynolds number]] <math>Re = Ur/\nu<<1</math>), thus within the region the flow is essentially a [[Stokes flow]]. For example, [[George Batchelor]]<ref>Batchelor, George Keith. An introduction to fluid dynamics. Cambridge university press, 2000.</ref> gives a typical value for lubricating oil with velocity <math>U=10\text{ cm}/\text{s}</math> as <math>r\ll0.4\text{ cm}</math>. Then for two-dimensional planar problem, the equation is
Line 32:
:<math>f(\theta) = \frac{1}{\alpha^2 - \sin^2\alpha} [\theta \sin \alpha \sin (\alpha-\theta) - \alpha(\alpha-\theta) \sin\theta]</math>
Therefore, the velocity field is
:<math>
|