Order-infinite-3 triangular honeycomb: Difference between revisions

Content deleted Content added
Line 191:
|bgcolor=#efdcc3|Edge figure||[[Apeirogon|{∞}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Infinite-order heptagonalapeirogonal tiling|{&infin;,∞}]] [[File:H2 tiling 2ii-4.png|40px]]<BR>{(&infin;,∞,&infin;)} [[File:H2 tiling iii-4.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 apeirogonal honeycomb|{∞,&infin;,3}]]
Line 199:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-infinite triangular honeycomb''' (or '''3,&infin;,∞ honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {3,&infin;,∞}. It has infinitely many [[infinite-order triangular tiling]], {3,&infin;}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an ''infinite-order heptagonalapeirogonal tiling'', {&infin;,∞}, [[vertex figure]].
 
{| class=wikitable width=480
Line 209:
 
{{-}}
 
=== Order-infinite-3 square honeycomb===
{| class="wikitable" align="right" style="margin-left:10px"