Content deleted Content added
Line 111:
In a study by Fichten et al., it was found that assistive technology can be beneficial in aiding students with the progression of their reading and writing skills. Tools such as spell check or text-to-speech can be helpful to learners with dyslexia by allowing them to focus more on self-expression and less on errors.<ref>Alsobhi, A., Khan, N., & Rahanu, H. (2015). Personalised learning materials based on dyslexia types: ontological approach.Procedia Computer Science, 60, 113-121.</ref>
=== Design implications ===
Alsobhi, et. al., examined assistive technologies for dyslexic students and concluded that the most fundamental considerations to be had when serving students of this population are: “the learning styles that people with dyslexia exhibit, and how assistive technologies can be adapted to align with these learning behaviors.”<ref>Alsobhi, A., Khan, N., & Rahanu, H. (2015). Personalised learning materials based on dyslexia types: ontological approach.Procedia Computer Science, 60, 113-121.</ref>
The Dyslexia Adaptive E-Learning (DAEL) is a suggested a framework that proposes four dimensions that cover 26 attributes. The proposed framework asks educators to make decisions based on perceived ease of use, perceived usefulness, and system adaptability:
perceived ease of use: This refers to the degree to which a student believes that using the technology is free of effort.<ref>Alsobhi, A., Khan, N., & Rahanu, H. (2015). DAEL framework: a new adaptive e-learnng framework for students with dyslexia. Procedia Computer Science, 51, 1947-1956.</ref> One technique to increase the perceived ease of use includes utilizing technology in which self-descriptiveness is present. This, coupled with clarity and logical flow of functions, makes the learning process easier and the interaction between the user and machine more convenient.<ref>Alsobhi, A., Khan, N., & Rahanu, H. (2015). DAEL framework: a new adaptive e-learnng framework for students with dyslexia. Procedia Computer Science, 51, 1947-1956.</ref>
perceived usefulness: Defined as how a student’s performance, or learning performance, can be enhanced by a system. Studies show the impact of perceived ease of use and perceived usefulness and their role in a users’ decision on whether to use a system again. Scaffolding as well as accommodations to the student’s learning style will help overcome limitations of system operations, as will feedback geared toward system improvements.<ref>Alsobhi, A., Khan, N., & Rahanu, H. (2015). DAEL framework: a new adaptive e-learnng framework for students with dyslexia. Procedia Computer Science, 51, 1947-1956.</ref>
system adaptability: Refers to the user experiences and the way in which students are given control over a system to increase confidence and comfort in their learning. In addition to implications for the system, the flow of content shouldb be logical and the tone (attitude) of content should be encouraging.<ref>Alsobhi, A., Khan, N., & Rahanu, H. (2015). DAEL framework: a new adaptive e-learnng framework for students with dyslexia. Procedia Computer Science, 51, 1947-1956.</ref>
==See also==
|